Log in

Log in

An improved process for the preparation of urea from carbon dioxide and ammonia at elevated temperature and pressure whereby unconverted ammonia, substantially free of carbon dioxide and water is recovered from a urea and ammonium carbamate containing liquid process stream. An urea and ammonium carbamate containing process stream is expanded to a pressure of between about 1 and 25 kg/cm2 absolute and heated, thereby decomposing ammonium carbamate and forming a gas mixture containing ammonia, carbon dioxide and water vapor. The improvement comprises the steps of (a) introducing this gas mixture into a carbon dioxide separation column along with sufficient diluting water to form a first residual liquid phase, containing ammonia, carbon dioxide and from about 65 to 96 percent by weight water, in the bottom of such column, and separately removing therefrom an off-gas of carbon dioxide substantially free of ammonia, and the first residual liquid phase; (b) introducing this first residual liquid phase into a desorption column wherefrom a second off-gas containing ammonia, carbon dioxide and water vapor, is removed; (c) introducing the second off-gas into an ammonia separation column and separately removing therefrom a third off-gas of ammonia substantially free of carbon dioxide and water vapor, and a liquid phase containing ammonia, carbon dioxide and water; and (d) recycling the third gas phase back to the urea synthesis zone. The carbon dioxide separation column, desorption column and ammonia separation column are all operated at substantially the same pressure of between about 1 and 25 kg/cm2 absolute.