UreaKnowHow Leak Detection System

#1 Safety Measure with a Guaranteed Pay Back
Content

1. Incidents with High Pressure Urea Equipment
2. Risk Register Urea Reactor
3. Various Leak Detection Systems
4. Requirements of a State-of-the-Art Leak Detection System
5. UreaKnowHow Leak Detection System
6. Conclusions
7. Design for twin urea lines
Today still too many accidents (ruptures, explosions) of high-pressure equipment items in the urea industry do occur...
UreaKnowHow.com Incident database

- Totally 24+ serious incidents (integrity of carbon steel threatened)
- During last 25 year every 3 years such an incident happened
- Leading to totally 21 casualties, 55+ people injured inside and 90+ people injured outside the plant
- **A failing leak detection system was the #1 main causes**

Source: UreaKnowHow.com Urea Incident Database as per December 2017
A failing leak detection system was the #1 main cause.
Safety Risks of Urea High Pressure Equipment

- High pressures
- High Temperatures
- Various kinds of corrosion phenomena (inside and outside)
- Crystallization risks
- Large volumes
- Release of toxic ammonia in case of a leak
1. Incidents

Ammonia leak at ... plant kills two workers [2016]

Ammonia leak

Carbamate leak
Risk Register of a typical Urea Reactor

Assumptions:
- Carbon steel pressure bearing wall
- 316L Urea Grade protective layer (loose liner and overlay welding)
- Leak detection system for loose liner: passive system (refer to picture)

As per today already 45+ Safety Hazards identified
2. Risk Register Urea Reactor

Risk ranking before (#b) and after (#a) Prevention and Mitigation steps

<table>
<thead>
<tr>
<th>Consequence</th>
<th>Category</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rare</td>
<td>Unlikely</td>
</tr>
<tr>
<td>Catastrophic</td>
<td>26a</td>
<td></td>
</tr>
<tr>
<td>Major</td>
<td>11a</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>2a</td>
<td></td>
</tr>
<tr>
<td>Insignificant</td>
<td>4a</td>
<td></td>
</tr>
</tbody>
</table>

75% of the risks can be prevented by a proper leak detection system
Top 4 recommendations for safeguarding a reactor:

1. Install an active, vacuum based, leak detection system with a reliable and accurate ammonia detector (protect loose liner, break before leak).

2. Perform regular walking tour inspections to identify leak in overlay weld (leak before break).

3. Perform corrosion inspections during turnarounds by qualified and experienced inspectors with a frequency depending on age of reactor and previous inspection findings (protect loose liner and overlay weld).

4. Make use of skillful and experienced welders during repair jobs and apply higher alloy materials.
Integrity of carbon steel pressure bearing wall can be threatened by:

✓ Carbamate corrosion due to damage of protective layer with (corrosion rate 1000 mm/year):
 • An early and reliable detection is a must
 • In case of a leak, stop the plant

✓ Stress corrosion cracking behind loose liner when water and contaminants are present

✓ Stress corrosion cracking from outside when water and contaminants are present
Cracks in carbon steel behind liner!

Never flush with steam or condensate
Do realise
Typical lifetime of the 316L Urea Grade protective layer of a urea reactor is 20-30 years

While
Typical lifetime of a urea plant is 40-50 years

Thus
Every urea reactor will finally operate close to the end of lifetime conditions of the protective layer

Meaning that at a certain moment a leak in the protective layer is unavoidable
Gas phase leak
- CO\textsubscript{2} and NH\textsubscript{3} gases flashing forming carbamate solids below 60\textdegree C

Liquid phase leak without urea
- Carbamate flashes forming CO\textsubscript{2} and NH\textsubscript{3} gases
- No carbamate solids above 60\textdegree C

Liquid phase leak with urea
- Carbamate flashes forming CO\textsubscript{2} and NH\textsubscript{3} gases
- No carbamate solids above 60\textdegree C
- BUT urea solids are present below 133\textdegree C and also above
133\textdegree C urea partly decomposes into NH\textsubscript{3} and HNCO but also forms biuret, triuret etc. with even higher melting points

An early reliable and accurate leak detection is thus very important
Passive systems

✓ Checking for vapors
✓ Checking the smell of NH₃
✓ NH₃ Reagent (color change)
✓ Checking of bubbles in a dipped vessel filled with oil
✓ Conductivity
✓ Infrared

All systems wait for leak to show up at the detector, while clogging can already occur...

Conclusion: Unreliable detector and takes too long time
Clogging can occur quickly with a mixture carbamate and urea.
3. Various Leak Detection Systems

Active systems

Pressurized system
- circulating inert gas behind loose liner

Vacuum system
- pulling vacuum behind loose liner
UreaKnowHow.com prefers vacuum system because:

1. It detects the maximum liner area (also around clips and other failure modes like condensation corrosion, fatigue cracks, clogged groove etc.)

2. It can be applied in every design reactor, also in case
 ✓ no grooves are present
 ✓ one hole is present in the liner compartment
 ✓ clogged situations

3. It avoids risks of liner bulging and damage. Also detection during start-up and shut down time.

4. A vacuum system allows larger distances between high-pressure equipment items (for example with twin urea lines)

5. It is possible to dilute the leak and avoid any risk of clogging
Grooves in an austenitic buffer layer do not avoid contact carbamate – carbon steel

Fixed weld connections of liner to carbon steel are assumed to be most critical...

...But clip welds, cold spots (condensation corrosion), etc. can also lead to leaks in liner
A vacuum system is the best solution for liner compartments with only one leak detection hole.
Liner bulging happens easily and often
Requirements for a State-of-the-Art leak detection system

- Active vacuum based leak detection system
- Reliable and accurate ammonia detector
- DCS alarms in case of not proper functioning
Further requirements for quick and easy locating of leak

- The possibility to check for open circuits (avoid clogging risks)
- The possibility to identify the leaking liner circuit in order to minimize downtime to locate and repair the leak
- To have information about the leak size (in order to be able to select and prepare the right and most suitable method to pinpoint the leak to minimize the downtime to locate and repair the leak)
- To be able to introduce a leak detection tracer for pinpointing the leak
- To distinguish false air leaks from real liner leaks
- Dilute the leak to avoid clogging
The UreaKnowHow Leak Detection System

#1 Safety Measure with a Guaranteed Pay Back
Features of UreaKnowHow.com Leak Detection System

- An active, vacuum based leak detection system
- With the most accurate and reliable ammonia detector
- The DCS operator will be warned in case there is
 - A lack of vacuum pressure
 - Clogging situation
 - Malfunctioning of the ammonia detector
 - And of course a liner leak is present
Benefits Boreal Ammonia Detector

- Safe
- Very accurate
- NH₃ specific
- Self calibrating
- No maintenance
- No consumables
- No memory effect
- No saturation effect
- Provides alarm when not functioning
Benefits Boreal Ammonia Detector:

The up to 8 multi-channel feature can also be applied for continuous monitoring NH$_3$ emissions from e.g.:
- MP inert vent
- Stack
- Flare
- Prill tower
- Granulation stack
- Absorbers
- Tanks

Monitoring continuously NH3 emissions will focus the operator attention to NH3 emission reduction and will for sure reduce NH3 consumption figures leading to a Guaranteed Pay Back
Benefits Boreal Laser Ammonia Detector:
Can also be applied for other applications like NH₃ leak detection in plant

Boreal Laser can be:
Point sensor
and/or
Line sensor
Benefits Boreal Laser Ammonia Detector:
Can also be applied for other applications like NH₃ storage tank, NH₃ loading leak detection
Benefits Boreal Laser Ammonia Detector:
Can also be applied for other applications
like NH₃ emission prill tower,
granulation or melt plant stack,
Flare, absorbers, etc.
5. UreaKnowHow
Leak Detection System

The core of the UreaKnowHow Leak Detection System

- Boreal NH₃ analyser
- Vacuum pump(s) (1+1)
- Inlet from each HP equipment item
The UreaKnowHow Leak Detection System offers:

- Suitable for all designs of HP equipment, new or existing
- No risks for bulging / damage of liner (vacuum)
- No risks for clogging (dilute leak)
- No risks for corrosion of carbon steel (no moisture)
- Best option for a clogged system (after an earlier leak)
- Most reliable and accurate NH3 detector (self calibrating, no memory effect, no saturation)
- Failure safe design
The UreaKnowHow Leak Detection System offers:

- Continuous detection for open connections of leak detection circuits
- Gives NH\textsubscript{3} leak rate and calculates leak size
- Detection of false leaking air
- Allows NH\textsubscript{3} leak test to find leak
- Can be combined with up to 7 other NH\textsubscript{3} emission sources monitoring

- **Guaranteed Pay Back** resulting from shorter shut down periods as one can find the leak faster, knows the leak size and assured no damage to carbon steel

- Plus **Guaranteed Pay Back** from lower NH\textsubscript{3} consumption figures
UreaKnowHow Leak Detection System

#1 Safety Measure with a Guaranteed Pay Back
For more information, please contact:

UreaKnowHow.com
Mark Brouwer
E: Mark.Brouwer@UreaKnowHow.com
M: +31 6 295 76 845
I: www.UreaKnowHow.com

Keytech Engineering Company
Pravin Jain
E: office@keytech.in
T: +91-22-4223 3535
I: www.keytech.in

#1 Safety Measure with a Guaranteed Pay Back